Designing For Smartwatches And Wearables To Enhance Real-Life Experience

Imagine two futures of mobile technology: in one, we are distracted away from our real-world experiences, increasingly focused on technology and missing out on what is going on around us; in the other, technology enhances our life experiences by providing a needed boost at just the right time.

The first reality is with us already. When was the last time you enjoyed a meal with friends without it being interrupted by people paying attention to their smartphones instead of you? How many times have you had to watch out for pedestrians who are walking with their faces buried in a device, oblivious to their surroundings?

The second reality could be our future – it just requires a different design approach. We have to shift our design focus from technology to the world around us. As smartwatches and wearables become more popular, we need to create design experiences that allow us to create experiences that are still engaging, but less distracting.

Lessons Learned From A Real-Life Project

We create a future of excessive distraction by treating our devices as small PCs. Cramming too much onto a small screen, and demanding frequent attention on a device that is strapped to your body means you can’t get away from the constant buzzing and beeping right up against your skin. Long, immersive workflows that are easily handled on a larger device become unbearable on a device that has less screen area and physical navigation space.

I noticed this on my first smartwatch project. By designing an application based on our experience with mobile phones, we accidentally created something intrusive, irritating and distracting. That meant the inputs and workflows demanded a lot of attention and were so involved that people had to stop moving in order to view notifications or interact with the device. Our biggest mistake was using the vibration motor on all notifications. If you had a lot of notifications, your smartwatch would buzz constantly. You can’t get away from it and people would actually get angry at the app.

How The Real World Inspired Our Best Approach

In a meeting, I noticed the lead developer glancing down at the smartwatch on his wrist from time to time. As he glanced down, he was still engaged in the conversation. I wasn’t distracted by his behavior. He had configured his smartwatch to only notify him if he got communications from his family, boss or other important people. Once in a while, he interacted with the device for a split second, and continued on with our conversation. Although he was distracted by the device, it didn’t demand his complete attention.

I was blown away at how different his experience was from my smartphone. If my phone buzzes in my pocket or my bag, it completely distracts me and I stop focusing on what is going on around me to attend to the device. I reach into my pocket, pull out the device, unlock the screen, then navigate to the message, decide if it’s important, and then put the device back. Now where were we? Even if I optimize my device settings to smooth some of this interaction out, it takes me much longer to perform the same task on my smartphone because of the different form factor.

This meeting transformed our approach to developing our app for the smartwatch. Instead of creating an immersive device experience that demanded the user’s attention, we decided to create something much more subtle. In fact, we moved away from focusing on application and web development experiences to focusing on application notifications.

Designing With A Different Focus In Mind

Instead of cramming everything we could think of on these smaller devices, we aimed for a lightweight extension of our digital virtual experience into the real world. You could get full control on a PC, but on the smartwatch, we provided notifications, reminders and short summaries. If it was important, and it could be done easily on a smartwatch, we also provided minimal control over that digital experience. If you needed to do more, you could access the system on a smartwatch, or a PC. We had a theory that we could replicate about 60% of PC functionality on a smartphone, and another 20% of that on a smartwatch.

Each different kind of technology should provide a different window on our virtual data and services depending on their technical capabilities and what the user is doing. By providing just the right information, at just the right time, we can get back to focusing on the real world more quickly. We stopped trying to display, direct and control what our end users could do with an app, and relied on their brains and imaginations more. In fact, when we gave them more control, with information in context to help solve the problem they had right then and there, users seemed to appreciate that.

Design To Enhance Real-Life Experiences

After the initial excitement of buying a device wears off, you usually discover that apps really don’t solve the problems you have as you are on the move. When you talk to others about the device, you find it difficult to explain why you even own and use it other than as a geeky novelty.

Now, imagine an app that reminds you of your meeting location because it can tell you are on the wrong floor. Or one that tells you the daily specials when you walk into a coffee shop and also helps you pay. Imagine an app that alerts you to a safety brief as you head towards a work site, or another app that alerts you when you are getting lost in an unfamiliar city. These ideas may seem a bit far off, but they are the sorts of things smartwatches and similar small screen devices could really help with. As Josh Clark says, these kinds of experiences have the potential to amplify our humanity1.

How is this different from a smartphone? A smartphone demands your complete attention, which interrupts your real-world activities. If your smartwatch alerts you to a new text or email, you can casually glance at your wrist, process the information, and continue on with what you were doing. This is more subtle and familiar behavior borrowed from traditional wristwatches, so it is socially acceptable. In a meeting, constantly checking your smartphone is much more visible, disruptive, irritating and perceived as disrespectful. If you glance at your wrist once in a while, that is fine.

It’s important to remember that all of these devices interrupt our lives in some way. I analyze any interruption in our app designs to see if it has a positive effect, a potentially negative effect, or a neutral effect on what the user is doing at the time. You can actually do amazing things with a positive interruption. But you have to be ruthless about what features you implement. The Pebble smartwatch design guide talks about “tiny moments of awesome” that you experience as you are out in the real world. What will your device provide?

Keep The Human In Mind

Our first smartwatch app prototype was a disaster. It was hard to use, didn’t make proper use of the user interface, and when it was tested in the real world, with real-life scenarios, it was downright annoying. Under certain conditions, it would vibrate and buzz, light up the screen and grab your attention needlessly and constantly. People hated it. The development team was ready to dump the whole app and not support smartwatches at all because of the negative testing experience. It is one thing to have a mobile device buzz in your pocket or hand. It is a completely different thing to have something buzzing away that is attached to you and right up against your skin. People didn’t just get annoyed, they got really angry, really quickly – because you can’t escape easily.

Design For The Senses

I knew we had messed up, but I wasn’t sure exactly why. I talked to Douglas Hagedorn, the founder and CEO of Tactalis, a company developing a tactile computer interface for people who are sight-impaired. Doug said that it is incredibly important to understand that different parts of the body have different levels of sensitivity. A vibration against your leg in your trouser pocket might be a mild annoyance, but it could be incredibly irritating if the device vibrates the same way against your wrist. It could be completely unbearable if it is touching your neck (necklace wearable) or on your finger (ring wearable).

Doug also advised me to take more than one sense into account. He mentioned driving a car as an example. If all you do is provide a visual simulation for driving a car, it doesn’t feel correct to your body. That’s because driving a car also has different senses involved. For touch, there is the sensation of sitting in a seat, with a hand on the steering wheel and a hand on the gear shifter, as well as pedals beneath your feet. There are also sensations of movement and sound. All of these together provide the experience of driving a car.

With a smartwatch or wearable, depending only on one sense won’t help make the experience immersive and real. Doug advised using different notification features on the devices to signify different things. Design so that physical vibrations are for one type of interaction and a screen glow is used for another. That way the user observes a blend of virtual experiences similarly to how they experience the real world.

Figure 1: The author checking a smartwatch notification while walking past a landmark.2
Figure 1: The author checking a smartwatch notification while walking past a landmark. (Image credit: Elizabeth Kohl3) (View large version4)

Understand Context

Because the devices are attached to us, they constantly move, and are looked at and interacted with at awkward angles. Users must be able to read whatever you put on the screen, and easily interact while moving. When moving, it is far more difficult to read and input into the screen. When sitting down, the device and your body are more stable and we can tolerate far more device interaction. Ask critically:

  • What are people going to be doing when using our app?
  • Where will they be?
  • What happens when the user is moving versus sitting down?

It’s critical to understand the device interactions: taps, gestures, voice control, physical buttons and dials.

Understand Emotions

Our emotions vary depending on experiences and contexts, which can be extremely intense and intimate, or bland and public. Our emotional state at a particular point in time has an enormous impact on what we expect from technology. If we are fearful or anxious and in a rush, we have far less patience for an awkward user experience or slow performance. If we are happy or energetic, we will have more patience with areas where the app experience might be weaker.

Since these devices are taken with us wherever we go, they are used in all sorts of conditions and situations. We have no control over people’s emotions so we need to be aware of the full range and make sure our app supports them. It’s also important to provide user control to turn off or mute notifications if they are inappropriate at that time. When people have no control over something that is bothering them, negative emotions can intensify quickly.

  • Spend time on user research and create personas to help you understand your target user.
  • Create impact stories for core features – a happy ending story, a sad ending story, and an unresolved story.
  • Also create storyboards (see Figure 2) to demonstrate the fusion of your virtual solution with the real world.
Figure 2: Demonstrating real-world interaction with an activity tracker using storyboards.5
Figure 2: Demonstrating real-world interaction with an activity tracker using storyboards. (Created with StoryBoardThat6) (View large version7)

We usually spend more time on these efforts than the visual design because we can incorporate context, emotions, and error conditions early on. We can use these dimensions to analyze our features and remove those that don’t make sense once they meet the real world

It is incredibly important to test away from the development lab, out of your building. It is vital to try things out in the real world because it has very different conditions to a development lab. For each scenario, also simulate different conditions that cause different reactions and make them realistic:

  • Simulate stress by setting impossible timelines on a task using the device.
  • Simulate fear by threatening a loss if the task isn’t completed properly.
  • Simulate happiness by rewarding warmly.

Weather conditions have an effect as well. I am far less patient with application performance when it is cold or very hot, and my fingers don’t work as well on a touchscreen in either of those situations. As devices will be used in all weathers, with all kinds of emotions and time pressure, simulating these conditions when testing your designs is eye-opening.

Minimize Interruptions

When we do need to distract people, we should make the notifications high-quality. As we design workflows, screen designs and user interactions, we need to treat them as secondary to the real world so we can enhance what is going on around people rather than detracting from their day-to-day lives.

Try to create apps for notifications and lightweight remote control that help focus on creating an experience that relies on quick information gathering, and making the odd adjustment on the fly. Users stop, read a message, interact easily and quickly, and then move on. They spend only seconds in the app at any given time, rather than minutes.

The frequency of notifications should be minimal so the device doesn’t constantly nag and irritate the wearer. Allow the wearer to configure timing and types of notifications and to easily disable them when needed. During a client consultation it might be completely inappropriate to get notifications, whereas it might be fine while commuting home. Also provide users with the final say in how and when they are notified. A vibration and a screen glow is fine in some contexts, but in others, just a screen glow will suffice since it won’t disturb others.

Design Elegant And Minimalistic Visual Experiences

One of my favorite stories of minimalism in a portable device design is from the PalmPilot project. It’s said that the founder of Palm, Jack Hawkins, walked around with a carved piece of wood that represented the PalmPilot prototype. Any new features had to be laid out physically on the block of wood, and if there wasn’t room on it they had to decide what to do. Could the features be made smaller? If not, what other feature had to be cut from the design? They knew that every pixel counted. We need to be just as careful and demanding in our wearable app decisions.

Figure 3: Minimalist design with color on the Apple Watch.8
Figure 3: Minimalist design with color on the Apple Watch. (Apple Watch template by Fabio Basile9) (View large version10)

Since these devices have small screens or no screens, there is a limit to the information that is displayed. For example, prioritize to show only the most important information needed at that moment. Work on summaries and synthesizing information to provide just enough. Use a newspaper headline rather than a paragraph.

Small Screens

Screens on wearables are very small and the resolutions can feel tiny. These devices also come in all shapes and (small) sizes. Beyond various rectangular combinations, some smartwatch and wearable screens are round. It’s important to design for the resolution of the device as well, and these can vary widely from device to device. Some current examples are: 128×128px, 144×168px, 220×176px, 272×340px, 312×390px, 320×290px, and 320×320px.

Screen resolutions on all devices are increasing, so this is something to keep on top of as new devices are released. If you are designing for different screen sizes, it is probably useful to focus on aspect ratios, since this can reduce your design efforts if different sizes share the same aspect ratio.

When working on responsive websites, you may encounter resolutions as high as 2,880×1,800px on PC displays, down to 480×320px on a small smartphone. When we designed for wearables we believed we could simply shrink the features and visual design further. This was a huge mistake, so we started over from scratch.

We decided to sketch our ideas on paper prior to building a prototype app. This helped tremendously because we were able to analyze designs and simulate user interactions before putting a lot of effort into coding. It was difficult to reach our app ambitions with such a tiny screen. A lot of features were cut, and it was painful at first, but we got the hang of it eventually.

No Screens

Many wearables have no screens at all, or they have a minimal screen that is reminiscent of an old LCD clock radio. Many devices are limited to UIs that only contain number shapes, a limited amount of text and little else. Other devices have no screen at all, relying on vibration motors and blinking lights to get people’s attention.

App engagement while wearing no-screen devices occurs mostly in our brains, aside from the odd alert or alarm through a vibration or blinking light. When devices are synced, a corresponding larger screen offers more details. This multiscreen experience reinforces the story narrative while they are away from a screen using only a wearable. This is more of a service-based approach than a standalone app approach. User data is stored externally (in the cloud), and display, interaction and utility are different depending on the device. The strong narrative that is reinforced in higher-fidelity devices helps persist it across device types. This different view on user-generated data also encourages self-discipline, a sense of completion or accomplishment, competition, and a whole host of feelings and emotions that exist outside of the actual technology experience.

Design Aesthetics

Design aesthetics are incredibly important because wearables extend a user’s personal image. Anything that we put on the screen should also be visually pleasing because it will be seen not only by the wearer but those around them. Minimalist designs are therefore ideal for smartwatches and wearables. Make good use of formatting and the limited whitespace. Use large fonts and objects that can be seen and interacted with while on the move. If you can, use a bit of color to grab attention and create visual interest.


  1. 1
  2. 2
  3. 3
  4. 4
  5. 5
  6. 6
  7. 7
  8. 8
  9. 9
  10. 10

The post Designing For Smartwatches And Wearables To Enhance Real-Life Experience appeared first on Smashing Magazine.

Leave a Reply

Your email address will not be published.